This product is the best fit for students, teacher, educator. If you are looking for a test and examination question paper for practice.

Wednesday, May 28, 2025

Solution Using Branch and Bound Method

 

Integer Linear Programming (ILP) Solution Using Branch and Bound Method

Problem Statement

We need to solve the following Integer Linear Programming (ILP) problem:

Maximize:

Z=3x1+4x2

Subject to:

  1. 7x1+16x252

  2. 3x12x29

  3. x1,x20

  4. x1,x2 must be integers.


Solution Using Branch and Bound Method

Step 1: Solve the Linear Relaxation (Ignore Integer Constraints)

First, we solve the problem as a standard Linear Program (LP) without integer constraints.

Graphical Approach

  • Constraint 1: 7x1+16x2=52

    • When x1=0x2=3.25

    • When x2=0x17.43

  • Constraint 2: 3x12x2=9

    • When x1=0x2=4.5 (Not feasible since x20)

    • When x2=0x1=3

Feasible Corner Points:

  1. (0,0) → Z=0

  2. (0,3.25) → Z=13

  3. Intersection of Constraints:

    • Solving:

      7x1+16x2=523x12x2=9
    • Solution: x1=4x2=1.5 → Z=18

  4. (3,0) → Z=9

Optimal LP Solution:

(x1,x2)=(4,1.5),Z=18

Since x2=1.5 is not integer, we proceed with Branch and Bound.


Step 2: Branching on x2

We branch on the non-integer variable x2=1.5, creating two subproblems:

  1. Subproblem 1: x21

  2. Subproblem 2: x22

Subproblem 1 (x21)

  • New Constraints:

    • 7x1+16x252

    • 3x12x29

    • x21

Solution:

  • Intersection of 3x12x2=9 and x2=1:

    3x12(1)=9    x1=1133.666
  • Optimal LP Solution: (3.666,1)Z=15.666

Since x1 is still non-integer, we branch further on x1:

Branch x13
  • New Solution: (3,1)Z=13

    • Feasible Integer Solution!

    • Current Best: Z=13

Branch x14
  • New Solution: (4,0.75) → Z=15

    • Still non-integer, but Z=15>13.

    • Further branching needed, but we prune since it cannot exceed Z=18.

Subproblem 2 (x22)

  • New Constraints:

    • 7x1+16x252

    • 3x12x29

    • x22

Solution:

  • Intersection of 7x1+16x2=52 and x2=2:

    7x1+16(2)=52    x1=2072.857
  • Optimal LP Solution: (2.857,2)Z=16.571

Since x1 is non-integer, we branch further on x1:

Branch x12
  • New Solution: (2,2.375)Z=15.5

    • Still non-integer, but Z=15.5>13.

    • Further branching possible, but we prune since it cannot exceed Z=18.

Branch x13
  • New Solution:

    • (3,1.9375)Z=15.75

    • Still non-integer, but Z=15.75>13.

    • Prune since it cannot exceed Z=18.


Step 3: Compare All Feasible Integer Solutions

From the branching steps, the feasible integer solutions found are:

  1. (3,1) → Z=13

  2. (2,2) → Z=14 (Check feasibility: 7(2)+16(2)=46523(2)2(2)=29)

Best Integer Solution:

(x1,x2)=(2,2),Z=14

Final Answer

The optimal integer solution is:

(x1,x2)=(2,2) with Z=14


No comments:

Post a Comment